Ball*-tree: Efficient spatial indexing for constrained nearest-neighbor search in metric spaces

نویسندگان

  • Mohamad Dolatshah
  • Ali Hadian
  • Behrouz Minaei-Bidgoli
چکیده

Emerging location-based systems and data analysis frameworks requires efficient management of spatial data for approximate and exact search. Exact similarity search can be done using space partitioning data structures, such as KD-tree, R*-tree, and ball-tree. In this paper, we focus on ball-tree, an efficient search tree that is specific for spatial queries which use euclidean distance. Each node of a ball-tree defines a ball, i.e. a hypersphere that contains a subset of the points to be searched. In this paper, we propose ball*-tree, an improved ball-tree that is more efficient for spatial queries. Ball*-tree enjoys a modified space partitioning algorithm that considers the distribution of the data points in order to find an efficient splitting hyperplane. Also, we propose a new algorithm for KNN queries with restricted range using ball*-tree, which performs better than both KNN and range search for such queries. Results show that ball*-tree performs 39%-57% faster than the original ball-tree algorithm.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An efficient nearest neighbor search in high-dimensional data spaces

Similarity search in multimedia databases requires an efficient support of nearest neighbor search on a large set of high-dimensional points. A technique applied for similarity search in multimedia databases is to transform important properties of the multimedia objects into points of a high-dimensional feature space. The feature space is usually indexed using a multidimensional index structure...

متن کامل

Indexing the Solution Space: A New Technique for Nearest Neighbor Search in High-Dimensional Space

ÐSimilarity search in multimedia databases requires an efficient support of nearest-neighbor search on a large set of highdimensional points as a basic operation for query processing. As recent theoretical results show, state of the art approaches to nearest-neighbor search are not efficient in higher dimensions. In our new approach, we therefore precompute the result of any nearest-neighbor se...

متن کامل

An Efficient Technique for Nearest-Neighbor Query Processing on the SPY-TEC

—The SPY-TEC (Spherical Pyramid-Technique) was proposed as a new indexing method for high-dimensional data spaces using a special partitioning strategy that divides a d-dimensional data space into 2d spherical pyramids. In the SPY-TEC, an efficient algorithm for processing hyperspherical range queries was introduced with a special partitioning strategy. However, the technique for processing k-n...

متن کامل

SIMP: Accurate and Efficient Near Neighbor Search in Very High Dimensional Spaces

Near neighbor search in very high dimensional spaces is useful in many applications. Existing techniques solve this problem efficiently only for the approximate case. These solutions are designed to solve r-near neighbor queries only for a fixed query range or a set of query ranges with probabilistic guarantees and then, extended for nearest neighbor queries. Solutions supporting a set of query...

متن کامل

Indexing land surface for efficient kNN query

The class of k Nearest Neighbor (kNN) queries is frequently used in geospatial applications. Many studies focus on processing kNN in Euclidean and road network spaces. Meanwhile, with the recent advances in remote sensory devices that can acquire detailed elevation data, the new geospatial applications heavily operate on this third dimension, i.e., land surface. Hence, for the field of database...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1511.00628  شماره 

صفحات  -

تاریخ انتشار 2015